Сопротивление изоляции кабеля.
Приступая к измерению сопротивления изоляции кабеля важно учесть температурные показатели окружающей среды. Почему так?
Это связано с тем, что при минусовой температуре в кабельной массе молекулы воды будут находиться в замерзшем состоянии, фактически в виде льда. А как известно лед является диэлектриком и не проводит ток.
Так что при определении сопротивления изоляции при минусовой температуры именно эти частички замерзшей воды не будут обнаружены.
Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.
Приборы и средства измерения сопротивления изоляции кабеля.
Следующим пунктом при проведении измерения сопротивления изоляции кабельных линий, будут сами измерительные приборы.
Наиболее популярным прибором для измерения сопротивления изоляции у работников нашей электролаборатории является прибор MIC-2500.
С помощью этого прибора произведенного фирмой Sonel можно не только снять замеры показателей сопротивления кабельных линий, шнуров, проводов, электрооборудования (трансформаторы, выключатели, двигатели и т.п), но и определить замер уровня изношенности и уровня увлажненности изоляции.
Стоит отметить, что именно прибор MIC-2500 включен в государственный реестр разрешенных для измерения сопротивления изоляции.
Согласно инструкциям прибор MIC-2500 должен проходить ежегодную государственную поверку. После процедуры поверки на прибор наносят голограмму и штамп, которые подтверждают прохождение поверки. В штампе указывается информация о дате плановой поверки и серийный номер измерительного прибора.
К работе с измерениями сопротивления изоляции допускаются только исправные и поверенные приборы.
Нормы сопротивления изоляции для различных кабелей.
Для определения норма сопротивления изоляции кабелей, нужно провести их классификацию. Кабели по функциональному назначению разделяются на:
- выше 1000 (В) — высоковольтные силовые
- ниже 1000 (В) — низковольтные силовые
- контрольные кабели — (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)
Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).
Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.
Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)
Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)
Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)
Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.
Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях, рекомендуем порядок действий при замерах.
1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения
2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.
3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.
4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.
5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.
Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».
Наглядно это выглядит так:
6. Данные измерений в процессе работы записываем в блокнот.
Методика измерения сопротивления изоляции низковольтных силовых кабелей.
Что касается измерения изоляции низковольтных силовых кабелей, то методика измерения незначительно отличается от описанной выше.
1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.
2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.
3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.
4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:
- между фазными жилами (А-В, В-С, А-С)
- между фазными жилами и нулем (А-N, В-N, С-N)
- между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
- между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки
6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.
Методика измерения сопротивления изоляции контрольных кабелей.
Особенностью измерения сопротивления изоляции контрольных кабелей является то, что жилы кабеля можно не отсоединять от схемы и делать замеры вместе с электрооборудованием.
Измерение сопротивления изоляции контрольного кабеля выполняется по уже знакомому алгоритму.
1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, которые предназначены для работ в электроустановках.
2. Измеряем сопротивления изоляции контрольного кабеля мегаомметром на 500-2500 (В) в такой последовательности.
Сначала совершаем подключение одного вывода мегаомметра к испытуемой жиле. Остальные жилы контрольного кабеля соединяем между собой и на землю. Ко второй выводу мегаомметра подключаем либо землю, либо любую другую не испытуемую жилу.
1 минуту производим замер испытуемой жилы. Потом эту жилу возвращаем к остальным жилам кабеля и поочередно измеряем каждую жилу.
3. Все полученные показатели измерения сопротивления изоляции контрольного кабеля фиксируем в блокнот.
Протокол измерения сопротивления изоляции кабеля.
Все вышеперечисленные электрические измерения, после получения данных сопротивления изоляции кабеля необходимо подвергнуть сравнительному анализу с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сформулировать вывод-заключение о пригодности кабеля к последующей эксплуатации и составить протокол измерения сопротивления изоляции.
Методика измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов
Данная методика предназначена для производства измерений сопротивлений изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков этажных и квартирных, и др.), а также изолирующих полов и стен при сертификационных испытаниях электроустановок зданий с целью оценки качества изоляции элементов электроустановок и сравнения с нормами табл. 43 приложения 1 ПЭЭП и табл. 61 А стандарта МЭК 364-6-61. В соответствии с этими нормативными документами норма сопротивления изоляции цепей электроустановки должны быть не менее 0, 5 мОм
Измерения сопротивления изоляции должны производиться согласно п. 612. 3 стандарта МЭК 364-6-61:
а) между токоведущими проводниками, взятыми по очереди «два к двум»,
б) между каждым токоведущим проводником и «землей».
Измерения должны проводиться при отсоединенных электроприборах, при снятых предохранителях, вывернутых лампах и т. д.
Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и «землей».
Примечание: эта мера предосторожности необходима, т. к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.
При измерении параметров изоляции электрооборудования следует учитывать требования п. 1. 20 приложения 1 ПЭЭП.
В соответствии с п.413.3 ГОСТ Р 50571.3-94 изолирующие (непроводящие) помещения, зоны, площадки имеют целью предотвратить одновременное прикосновение к частям, оказавшимся под разными потенциалами в случае повреждения изоляции токоведущих частей.
Требования считаются выполненными, если пол и стены помещения являются изолирующими и выполняется одно или несколько условий приведенных ниже:
а) открытые проводящие части и сторонние проводящие части, а также открытые проводящие части друг от друга удалены не менее 2м, а за пределами зоны досягаемости — 1,25 м;
б) установлены эффективные приборы между открытыми проводящими частями и сторонними проводящими частями;
в) сторонние проводящие части изолированы. Сопротивление изолирующего пола и стен, измеренное в каждой точке должно быть не ниже:
— 50 кОм при номинальном напряжении электроустановок не выше 500. В;
— 100 кОм при номинальном напряжении электроустановок выше 500 В.
В каждом помещении и для каждой поверхности в соответствии с п. 612.5 стандарта МЭК 364-6-61 должны быть сделаны три измерения. Одно измерение должно быть выполнено примерно в 1 м от сторонних проводящих частей, находящихся в помещении. Другие измерения должны быть сделаны на большем удалении.
Сопротивление изоляции практически во всех случаях измеряется мегаомметром — прибором, состоящим из источника напряжения — генератора постоянного (или переменного с выпрямителем) тока, измерительного механизма (магнитоэлектрического логометра) и добавочных резисторов.
В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5).
Ф4101, Ф4102 — на номинальное рабочее напряжение 100, 500, 1000. В. и Ф. 4101, Ф4102 на напряжение 2500В. Мегаомметры серии Ф. 4100 — электронного типа с питанием от электросети (или 12В).
Мегаомметры выпуска последних лет; ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) сняты с производства, но допускаются к эксплуатации мегаомметры типа M l101 М, МС-05, МС-06.
Класс точности приборов должен быть не более 4.
Мегаомметры к схеме присоединяют гибкими одножильными проводами с сопротивлением изоляции не менее 100 Мом длиной 2-3 м, концы которых маркируются. Концы присоединяемые к мегаомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками или специальными щупами. При измерениях специальные провода не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.
При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) -к проводнику тока (см. рис. 1.1. а, б, в). Схема замещения при измерении сопротивления изоляции фазы относительно земли и других заземленных фаз представлена на рис. 1.2.
1.1. Измерение сопротивления изоляции силовых кабелей и электропроводок
Перед началом измерения необходимо:
— убедиться, что на испытуемом кабеле нет напряжения;
— на 2-3 минуты заземлить токоведущие жилы для снятия с них возможных остаточных зарядов;
— тщательно очистить изоляцию от пыли и грязи.
Выбрать соответствующий предел измерений (в соответствии с ожидаемой величиной сопротивления изоляции) и подвергнуть мегаомметры контрольной проверке, которая заключается в проверке показаний на шкале при разомкнутых и замкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «Бесконечность» , во втором — у нуля.
Как правило, измеряется сопротивление изоляции каждой фазы кабеля относительно заземленных фаз (см. рис. 1.1 а, 1.2). Если измерения по этой схеме (сокращенный вариант — 3 замера) дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции каждой фазы относительно земли (остальные фазы не заземляются) — см. рис.1. З-х и между каждыми двумя фазами (см. рис. 1.36). Всего выполняется 6 замеров для 3-х жильных кабелей и соответственно 4 и 8 для 4-х жильных.
Значениями сопротивлений изоляции, измеренные по схемам рис. 1.3, ближе к действительным и должны удовлетворять требованиям норм
Вместе с записью результатов в отчетных документах необходимо указывать схему, с помощью которых они получены.
Измерения (снятие показаний), следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.
Сопротивление изоляции определяется показанием стрелки прибора через 15 и 60 с. после начала вращения.
Если определение коэффициента абсорбции К абс не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 с. от начала вращения.
При неправильно выбранном пределе измерения, необходимо снять заряд с испытуемой фазы, наложив заземление, переключить предел и повторить измерение на новом пределе. При наложении и снятии заземления пользоваться диэлектрическими перчатками.
При измерениях сопротивления изоляции кабелей на напряжение до 100. В. с нулевыми жилами необходимо помнить следующее:
а) согласно п.п. 1.7.81, 2.1.35 ПУЭ «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»;
б) как со стороны источников питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей;
в) схема испытания изоляции аналогична указанным выше, различия лишь в количестве замеров (4 или 8 вместо 3 или 6) и в отсутствии необходимости использовать зажим «Экран» на мегаомметрах.
Измерение сопротивление изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, приборах, аппаратах, вывернутых электролампах.
1.2. Измерение сопротивления изоляции силового электрооборудования
Значение сопротивления изоляции электрических машин и аппаратов в большой зависит от температуры. Замеры следует производить при температуре изоляции не ниже +- 5°С кроме случаев оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильности состояния влаги не отражают истинной характеристике изоляции.
Сопротивление изоляции класса «А» при понижении температуры на каждые 10°С увеличивается в полтора раза и наоборот. Сопротивление изоляции класса «В» при повышении температуры 10°С снижается примерно в два раза.
На основе этого «нормами испытания электрооборудования» определены коэффициенты (Кт — для электрических машин, Кз — для силовых трансформаторов) приведения результатов измерений к одной температуре, например, к данным завода-изготовителя.
Разность температур t2 – t1 | 1 | 2 | 3 | 4 | 5 | 10 | 15 | 20 | 25 | 30 |
Коэффициент перерасчета | 1,04 | 1,08 | 1,13 | 1,17 | 1,22 | 1,5 | 1,84 | 2,25 | 2,75 | 3,4 |
- t1 — температура, при которой производятся замеры на месте монтажа;
- t2 — температура, при которой производились замеры на заводе-изготовителе.
Минимально допустимое сопротивление изоляции электроустановок перед вводом в эксплуатацию должно соответствовать величинам, установленным ПУЭ. Нормы сопротивления изоляции для установок, находящихся в: эксплуатации приведены в ПЭЭП.
Сопротивление изоляции у переносного электроинструмента (электромашин) измеряется относительно корпуса и наружных металлических частей при включенном выключателе.
Корпус электроинструмента и соединенные с ним детали, выполненные из диэлектрического материала, на время испытания должны быть обернуты металлической фольгой, соединенной с контуром заземления.
У переносных трансформаторов для электроинструмента измеряется сопротивление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях первичной обмотки, вторичная должна быть закорочена и соединена с корпусом.
1.3.Проверки изоляции пола и стен
Проверке изоляции сопротивления пола и стен должна предшествовать работа по изучению и анализу проектной документации и документации предыдущих замеров и испытаний, а также работа по визуальному осмотру помещений подлежащих испытаниям.
1.3.1. Цель проверки.
Целью проверки изолирующих (непроводящих) помещений, зон, площадок является определение уровней сопротивления пола и стен относительно сторонних проводящих элементов и конструкций, находящихся в испытуемом помещении. Достаточный уровень сопротивления будет как мера защиты. Основной задачей этих мер будет предотвращение от одновременного прикосновения к частям, оказавшимся под разными потенциалами в случае повреждения основной изоляции токоведущих частей.
1.3.2. Методика проверки.
При необходимости выполнения требований п.413.3 для изолирующих (непроводящих) помещений, зон, площадок по крайне мере три измерения должно быть проведено в каждом помещении. Одно из измерений должно быть выполнено примерно в 1м от сторонних проводящих частей, находящихся в этом помещении. Два других проводятся на большем удалении. Эти замеры выполняются для каждой поверхности помещения.
В качестве источника постоянного тока используются мегаомметры с напряжением холостого хода 500В, где напряжение сети не превышает 500В., если напряжение сети превышает 500В., используется мегаомметр с напряжением холостого хода в 1000В.
Испытания желательно проводить до выполнения отделочных покрытий (лаки, краски и т.д.).
Электрод, при помощи которого производится измерение представляет собой квадратную металлическую пластину 250 х 250 мм., под которую подкладывается влажная водопоглощающая бумага или материя со стороной 270 х 270 мм. (Рис.3)
Измерительный электрод прижимается к полу с усилием 750Н, к стене 250Н.
Сопротивление изолирующего пола и стен измеренное в каждой точке, должно быть не ниже:
- 50 кОм с номинальным напряжением электроустановки ниже 500В;
- 100 кОм с номинальным напряжением электроустановки ниже 500В.
Изоляция сторонних проводящих предметов должна обладать достаточной механической прочностью и выдерживать испытательное напряжение 2000В переменного тока промышленной частоты, в течение 1 минуты. Измерение проводится также относительно элементов водоотопительных систем.
1.4. Некоторые особенности при работе с мегаомметром Ф4100.
Перед подключением прибора к питающей сети его необходимо заземлить.
Вывод заземления находится на передней панели прибора и имеет маркировку «┴». Его нельзя путать с аналогичным обозначением в измерительной схеме прибора («┴» — «Земля»).
После отпуска кнопки «Высокое напряжение» последнее снижается до безопасного значения за 5-10 с.
Работать с прибором необходимо в соответствии с указаниями заводской инструкции.
Мегаомметры Ф4102/1 и Ф4102/2 имеют питание от сети 220 В или от встроенных химических источников тока 10-14 В. Ресурс их в нормальных условиях достаточен для проведения не менее 250 измерений.
Мегаомметры Ф4100/1 и Ф4100/5 одного типа. У них вместо генераторов постоянного тока применены генераторы переменного тока с выпрямителем.
Имеется пять исполнений приборов этого типа, отличающихся по параметрам выходного напряжения и наибольшему значению измеряемого сопротивления.
1.5. Определение погрешности измерения
Замеренное прибором значение всегда отличается от его действительного значения т/е. всегда есть погрешность измерений.
Степень приближения измеренного значения к действительному характеризует относительная погрешность, определяемая следующим выражением
YНВ=YДх(АН/А)
YНВ — наибольшая возможная относительная погрешность измерения;
YД — класс точности прибора — допустимое значение приведенной погрешности;
АН — верхний предел измерения прибора;
А — замеренная величина.
Дополнительная погрешность при отклонении прибора от рабочего горизонтального положения в пределах 10° учитывается в величине наибольшей относительной погрешности измерения YНВ, т.е. погрешность измерения удваивается.
Основная погрешность приборов М4100/3 и М4100/4 определяется выражением
YНВ=[1+((N/Rx)-1)]
N — верхний предел измерения прибора, кОм (Мом);
Rx — измеренное сопротивление изоляции, кОм (Мом).
Для других типов мегаомметров в выражении должен быть поставлен класс точности по паспортам.
Как проверить изоляцию кабеля Статья
Надежность электрооборудования и электрических цепей напрямую зависит от состояния изоляции кабелей. Для ее оценки используются специальные приборы – мегаомметры.
Зачем выполнять проверку изоляции кабелей
Назначение изоляции – разделение разных по полярности жил кабеля. Ее основная характеристика – способность длительное время без повреждений выдерживать воздействие электрического тока. Некачественная изоляция или ее неудовлетворительное состояние могут привести к утечкам тока, поражению людей электротоком или возникновению пожаров.
Причины повреждения изоляции кабелей
Можно выделить основные причины повреждения изоляции кабелей:
- высокая влажность воздуха;
- резкие перепады температур;
- механические повреждения, возникающие во время монтажа или в процессе эксплуатации;
- физический износ.
Виды проверок изоляции кабелей
Для оценки состояния изоляции кабелей проводится два вида испытаний:
- Проверка электрической прочности изоляции. Она выполняется при повышенном напряжении с помощью пробойной установки, в состав которой входит повышающий трансформатор. Как правило, этот вид испытания проводится в лаборатории.
- Измерение сопротивления изоляции постоянному току. Для его проведения нужен только мегаомметр. Этот вид испытаний отличается мобильностью и может выполняться без привязки к стационарной лаборатории.
Особенности мегаомметра
Основными элементами мегаомметра являются генератор постоянного напряжения и амперметр. В старых моделях приборов в качестве источников питания использовались ручные динамо-машины. Вращать их ручку и одновременно выполнять измерения было достаточно неудобно. В современных устройствах применяются встроенные или внешние источники питания.
Так схематично можно изобразить устройство мегаомметра
Генератор мегаомметра выдает напряжение величиной 100, 250, 500, 700, 1000 или 2500 В. Разные модели приборов могут работать только в одном или в нескольких диапазонах. Встроенный в мегаомметр амперметр измеряет силу тока в цепи. Учитывая, что генератор выдает откалиброванное напряжение известной величины, шкала измерительной головки сразу градуируется в единицах измерения сопротивления – мега- или килоомах.
Каким должно быть сопротивление изоляции
Величина сопротивления изоляции для разных типов кабелей заложена в двух документах:
- Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП): пункт 6.2 и таблица 37.
- Правилах устройства электроустановок (ПУЭ): пункт 1.8.37 и таблица 1.8.34.
При этом принято классифицировать кабели по назначению:
- Высоковольтные силовые. Такие кабели рассчитаны на напряжение более 1000 В. Для них нормированного значения сопротивления изоляции нет. Считается, что оно должно быть не менее 10 МОм.
- Низковольтные силовые. Кабели этого вида рассчитаны на напряжение менее 1000 В. У них минимальный порог сопротивления изоляции должен быть не ниже 0,5 МОм.
- Сигнальные, контрольные и общего назначения. Такие кабели используются для подключения распределительных или защитных устройств, питания электроприводов, монтажа цепей управления и прочего. Для них общепринятый показатель сопротивления изоляции должен быть не ниже 1 МОм. Более точные цифры должны быть указаны в сопроводительной документации.
Замеры сопротивления изоляции силовых кабелей выполняются при напряжении 2500 В, всех остальных – 500–2500 В.
Подготовка к выполнению измерений
На подготовительном этапе следует выделить несколько моментов:
- Принцип работы мегаомметра заключается в подаче калиброванного напряжения в схему и замере появившихся токов. Соответственно, следует исключить появление наведенного напряжения. Для этого от питания отключается не только тестируемый кабель, но и окружающее оборудование.
- Измерения следует выполнять при положительной температуре. Дело в том, что при отрицательной температуре влага, способная попасть в структуру кабеля, замерзает. В таком агрегатном состоянии она является диэлектриком, а не проводником. Соответственно, выявить ее не получится и измерения будут некорректны.
- Подключенный к оборудованию кабель требуется отключать со всех сторон. Если этого не сделать, то будет измерено сопротивление изоляции не отдельного кабеля, а всей подключенной схемы.
Порядок проведения измерений
В зависимости от вида кабелей в порядок проведения измерений вносятся определенные коррективы. При этом первым шагом всегда является проверка отсутствия напряжения в тестируемом кабеле.
Оговоримся сразу, что у нас есть два конца кабеля: замеры выполняются с одного из них.
Высоковольтные силовые кабели
В этом случае измерение сопротивления изоляции включает в себя следующие этапы:
- Освободить жилы кабеля и развести их друг от друга.
- Подключить испытательное заземление к двум жилам кабеля, на которых не меряется сопротивление изоляции.
- Подключить один конец мегаомметра к заземляющему устройству.
- Подключить второй конец мегаомметра к тестируемой жиле.
- Провести измерение сопротивления изоляции в течение 1 минуты.
- Повторить пункты 2–5 для двух оставшихся жил.
Так измеряется сопротивление изоляции высоковольтного силового кабеля
Низковольтные силовые кабели
В этом случае измерение сопротивления изоляции включает в себя следующие этапы:
- Освободить жилы кабеля со второй стороны и развести их друг от друга.
- Подключить один конец мегаомметра к фазе, относительно которой выполняются замеры.
- Подключить второй конец мегаомметра поочередно к оставшимся двум фазам, нулю и земле.
- Провести каждое измерение сопротивления изоляции в течение 1 минуты.
Так измеряется сопротивление изоляции низковольтного силового кабеля
Контрольные кабели
В этом случае можно сделать исключение и не отсоединять кабель от схемы.
Измерение сопротивления изоляции включает в себя следующие этапы:
- Подключить один конец мегаомметра к тестируемой жиле.
- Остальные жилы соединить друг с другом и с землей.
- Подключить второй конец мегаомметра к земле или любой другой жиле.
- Провести измерение сопротивления изоляции в течение 1 минуты.
- Повторить пункты 1–4 для всех оставшихся жил кабеля.
Так измеряется сопротивление изоляции контрольного кабеля
Периодичность проведения измерений
Периодичность проведения измерений сопротивления изоляции заложена в ПТЭЭП (пункт 2.12.7) и ГОСТ Р 50571.16-2007 «Электроустановки низковольтные. Испытания». Она составляет 1 раз в три года. В целом подобное тестирование проводится в следующих случаях:
- При выпуске продукции на заводе-изготовителе.
- На объекте перед монтажом.
- После монтажа перед подачей напряжения.
- При выявлении дефектов.
- При проведении технического обслуживания 1 раз в 3 года.
Заключение
Контроль состояния изоляции с помощью измерения ее сопротивления – эффективный способ выявления повреждений кабелей и обеспечения безопасности для работающего оборудования, персонала или зданий. При этом результат и скорость работы во многом зависят от качества и удобства используемых мегаомметров.
Измерение сопротивления изоляции: руководство!
Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.
Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.
Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.
Проверка: испытание или измерение?
На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.
Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.
При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).
Типовые причины неисправности изоляция
Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.
Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.
1. Электрические нагрузки
В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.
2. Механические нагрузки
Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.
3. Химические воздействия
Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.
4. Напряжения, связанные с колебаниями температуры:
В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.
5. Загрязнение окружающей среды
Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.
В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.
В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.
Принцип измерения сопротивления изоляции и влияющие на него факторы
Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.
На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.
Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:
- Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
- Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
- Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.
На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.
Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.
Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.
Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.
Влияние температуры
Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.
Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.
Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)
Методы тестирования и интерпретация результатов
Кратковременное или точечное измерение
Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.
Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.
На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.
В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.
Резкое падение в точке B указывает на повреждение изоляции.
В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.
Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)
Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.
Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.
Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.
Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.
Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.
Показатель поляризации (PI)
При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.
Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.
Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.
PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)
Результаты интерпретируются следующим образом:
Значение PI (нормы)
Коэффициент диэлектрической абсорбции (DAR)
Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:
DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)
Результаты интерпретируются следующим образом:
Значение DAR (нормы)
Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)
Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.
Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.
Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.
Метод испытания рассеиванием в диэлектрике (DD)
Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.
Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.
Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:
DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)
Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.