Электронные весы на базе HX711
На сегодняшний день в продаже имеются необходимые инструменты, чтобы буквально «на коленке» собрать свои электронные весы: микросхема АЦП HX711 (продается на AliExpress), специально предназначенная для применения в весах разрядностью 24 бита и датчик массы, представляющий собой мостовой или полумостовой измеритель на базе тензорезисторов в качестве чувствительного элемента.
Если при подборе элементной базы микросхемы HX711 представлены практически одними и теми же модулями, то датчики массы можно подобрать различной конфигурации. Главный параметр таких датчиков – это измеряемая масса (1 кг, 3 кг, 5 кг, 50 кг и так далее), в зависимости от этого параметра датчики могут иметь так же различную форму и исполнение. По сути, датчики массы измеряют приложенное усилие относительно плоскости датчика – вес тела, но при помощи несложных физических формул можно вычислить массу тела. А раз мы измеряем силу, с которой тело давит на датчик, то и сфера применения подобных схем резко увеличивается. В самом простом случае – это обычные весы, для которых масса тела будет пропорциональна данным, получаемым от АЦП. В более сложных случаях при помощи схем на основе данной элементной базы можно измерять, например, скорость ветра (сила, с которой ветер давит на опору датчика, будет пропорциональна размеру опоры и скорости ветра) или регулировать прикладываемую силу к какому-либо предмету относительно получаемых данных.
При измерении массы тела данным методом стоит учитывать при разработке некоторые нюансы. Как уже отмечалось, датчик регистрирует вес тела, а вес тела это масса, умноженная на ускорение свободно падения или силу тяжести (
9,8 м/c2). Таким образом, видим, что измеренная масса тела будет зависеть от значения силы тяжести планеты, что значит, что в разных точках Земли, а также с увеличением высоты (расстояния от поверхности земли) сила тяжести будет изменяться, что повлияет на то, что масса тела в различных условиях может быть в небольшой степени различна. Хотя масса тела неизменна, но способ измерения связан этими физическими явлениями, поэтому это может являться причинами погрешности измерений кроме основных причин.
Как же мы все-таки измеряем массу (вес) тела этим датчиком, с виду напоминающим железную болванку?
Для начала необходимо иметь понятие о чувствительном элементе этого датчика – тензорезисторе.
Тензорезистор – это резистор, сопротивление которого изменяется в зависимости от его деформации.
С этим понятно – есть некий резистор (обычно это гибкая пластинка – пленочный тензорезистор, на который напылены проводящие элементы), который при изгибе, растяжении и прочих деформациях изменяет свое сопротивление. На датчике массы тензорезистор располагается под слоем белого защитного полимера. Основание датчика – алюминиевый брусок с отверстиями для крепления и большим отверстием для задания модуля упругости бруска таким образом, чтобы тензорезистор улавливал упругую деформацию этого бруска в заданном диапазоне измерения массы. Итак, собирая воедино способность тензорезистора изменять свое сопротивление при его деформации и способность металла бруска при упругой деформации растягиваться или сжиматься (деформироваться) при воздействии силы, получаем датчик, который измеряет деформацию при приложенной силе к этому датчику. А так как модуль упругости в самом распространенном варианте имеет линейный характер (закон Гука), получаем вполне точный датчик, с помощью которого можно измерять усилие, приложенное к датчику в заданной плоскости, и, следовательно, вес тела (и массу), прикладывая груз перпендикулярно датчика.
Направление усилия (приложения груза) указывается на самом датчике, там же указывается и вес, на который рассчитан этот датчик. Схема измерителя на этом датчике является полумостовой – один тензорезистор сверху, второй снизу, при приложении усилия один тензорезистор растягивается, второй сжимается. Схема способна регистрировать вес до сотой грамма, но в этом диапазоне очень много шумов, поэтому схема вполне стабильно способна регистрировать вес до десятых долей грамма. Однако, это применительно к датчику FZ0967 на 5 кг, если взять датчик на 1 кг, то теоретически минимально стабильный порог будет меньше. И аналогично при применении датчиков на больший вес минимально стабильный порог увеличится. Таким образом, при выборе датчика стоит учитывать сферу применения для получения максимально точного результата.
Для измерения массы различных тел был сделан измерительный столик из подручных материалов, а именно старой коробки DVD дисков и самих дисков (или подкладных болванок).
Одной стороной датчик прикручивается к центру коробки от дисков, ко второму конце датчика прикручивается диск, на которой будут ставиться грузы (диски хотя и гибкие, но при приложении чрезмерной силы хрупкие, это стоит учитывать при сверлении отверстий в них, чтобы не расколоть). Таким образом, один конец датчика зафиксирован, а вес прикладывается к другому концу – приложенный груз как бы действует на изгиб датчика, хотя этого вы не заметите.
Для работы с такими датчиками была специально разработана микросхема АЦП HX711.
На базе этой микросхемы в поднебесной делается несколько видов модулей: копеечные модули без экрана и чуть дороже с экранированием элементов. Модуль с экранированием теоретически должен давать более стабильный результат измерений.
Основные параметры микросхемы АЦП HX711:
- Два входных канала для измерения
- Регулируемый коэффициент усиления 32, 64, 128
- Простой цифровой интерфейс, не требующий программирования (так гласит даташит, хотя по большому счету программирование параметров присутствует)
- Регулируемое количество выборок 10 или 80
- Разрядность АЦП 24 бита
- Фильтр на 50 и 60 Гц питания
- Потребление тока до 1,5 мА
- Напряжение питания от 2,7 до 5,5 вольт
- Диапазон рабочих температур от минус 40 до плюс 85 градусов Цельсия
- Знаковые выходные данные от 800000h до 7FFFFFh
Для подключения к микроконтроллеру используется простой цифровой интерфейс, схожий с I2C, но имеющий с ним мало общего, поэтому придется управлять выводами интерфейса выводами микроконтроллера (в простонародии ногодрыг), так как аппаратного интерфейса ни на одном микроконтроллере нет – это некоторая импровизация для упрощения работы микросхемой, хотя на самом деле, уходя от стандартов, это все только усложняет. Пример использования этого интерфейса присутствует в даташите, поэтому все можно делать просто по примеру и аналогии.
После того, как получим данные от АЦП необходимо учесть два нюанса. Первое, значение представляет собой чистые данные АЦП, то есть количество отсчетов относительно приложенного веса. Что бы не забивать себе голову пересчетами количества отсчетов в значение веса или массы, вспоминаем, что все зависимости у нас линейные, а значит пропорциональные, поэтому нам нужен всего один общий коэффициент для этого пересчета. Для моего экземпляра коэффициент равен 430 при пересчете в единицы грамм. Как это узнать? Есть два способа – строгий математический, с поиском различных справочных данных по материалу из которого изготовлен датчик, поиска параметров тензорезисторов для выведения зависимости модуля упругости материала в данной геометрической конфигурации к сопротивлению тензорезисторов при упругой деформации датчика. Второй способ не самый точный, но крайне быстрый и простой. Необходимо просто замерить сколько отсчетов АЦП приходится на единицу приложенной массы. Для этого необходимо учесть второй нюанс – сама конструкция имеет некоторый вес и перед измерениями его нужно просто убрать – вычесть и получить «ноль» на весах. Далее поставить на весы гирьку определенной известной массы и получить некоторое значение АЦП. Это количество отсчетов будет приходится на единицу массы на весах:
К=(количество отсчетов с массой гирьки – количество отсчетов без приложенной массы) / масса гирьки
Далее этот коэффициент используется после каждого измерения АЦП для перевода в значение единиц массы и выводится на дисплей. Для моего экземпляра этот коэффициент равен 430.
Для сборки весов используем микроконтроллер STM32.
Исходный код для микроконтроллера находится в конце статьи. Схему удобно собирать на минимальной отладочной плате, потому что в этом случае необходимо минимум деталей для сборки — соединяем между собой плату с микроконтроллером, дисплей и модуль АЦП с датчиком, подключаем к питанию.
Для оценки точности измерений, а также для определения коэффициент для перевод значения АЦП в массу лучше всего использовать груз с заведомо точно известной массой. Для этой цели хорошо подойдут мерные гирьки. Вот такой раритетный экземпляр, например.
Как видим, схема показывает весьма неплохие результаты точности измерения (небольшое видео находится в конце статьи). Стоит помнить также о том, что датчик рассчитанный на измерение массы до 200 кг не даст такой точности до сотых долей грамма как датчик, рассчитанный на измерение массы до 100 г. Поэтому при выборе датчика обязательно нужно учитывать сферу применения весов для получения наиболее оптимальных результатов.
Электронные весы своими руками
В качестве индицирующего устройсва применен однострочный жидко-кристалический индикатор с подсветкой. В качестве дачика веса использован тензодатчик на 5 килограмм. Все куплено у наших партнеров их Китая. Поэтому, о каких то высоких показателях параметров измерения веса говорить не приходится, В основном из-за самого тензодатчика, показания которого могли бы быть и постабильнее. Но для быта эта конструкция вполне вполне подойдет.
Тензодатчик
На фото ниже показана работа устройства без взвешивания и с взвешиванием гирьки в сто грамм.
Здесь десятые доли в показаниях на индикаторе, это сотни миллиграмм. Десятки и единицы миллиграмм на индикацию не выводятся, хотя их значения с микросхемы считываются. Слишком быстрая смена показаний этих разрядов при таком макетном монтаже устройства.
Теперь немного о программе микроконтроллера. После всей классической процедуры инициализации регистров начинается программа считывания данных из памяти микросхемы АЦП DA1. За ней следует подпрограмма коррекции нуля. Эта программа активизируется каждый раз при включении питания. Я не стал вводить в схему дополнительной кнопки для этой опции. Естественно, если вы включите весы с установленной на них тарой, то ее вес тоже будет вычитаться из общих значений и у вас на индикаторе будет вес нетто. Так как все датчики невозможно сделать с одинаковыми параметрами, значит, у разных датчиков будет разный наклон преобразовательной характеристики — зависимость уровня выходного сигнала от величины приложенного усилия. Исходя из этого, нам надо будет найти коэффициент, на который мы будем умножать числовое значение данных полученных с АЦП. В моем случае этот коэффициент равен 1,1295. Как его определить. Включаете весы, ставите контрольный груз, например гирьку в 100г. Считываете показания индикатора, у меня они были равны 88,5347… Потом 100г делите на 88,5347г и получаете нужный коэффициент. Программно мы будет умножать естественно на число без запятой – 11295. Т.е. коэффициент, умноженный на 10000. После умножения обратно делить на 10000, полученное произведение мы не будем, а просто после преобразования двоичного числа в двоично-десятичное, четыре младших разряда не будем выводить на индикацию, что и соответствует делению. В шестнадцатеричном коде это число выглядит: старший байт – 2С, младший – 1F. Ниже приведено окно Disassembly Listing, здесь помечены адреса регистров, в которых лежит этот коэффициент.
Это для людей знакомых с программированием. Теперь для тех, кто с программированием не знаком. Значение этого коэффициента можно изменить в указанных ячейках памяти программ. В программе Ic prog
В программ К-150, все на том же месте.
Как сделать электронные весы своими руками
Все тензодатчики работают на принципе изменяющегося сопротивления в процессе механического воздействия на проводник. Простейшее конструктивное исполнение тензодатчика для весов сделано в виде проводниковой мелкоячеистой сетки, закрепленной на токопроводящей основе. В качестве такой основы может использоваться металлическая фольга. Полученный прибор при ударе или надавливании способен точно определить основные параметры такого воздействия: где, когда и с какой силой был нанесен удар.
Основная роль тензора в подобных ситуациях – своевременная сигнализация о воздействии. Чтобы полученные данные обрели необходимый формат, к тензодатчику веса подключаются дополнительные устройства.
В тензорных регистрирующих приборах для исполнительной схемы используется проволочный вариант, в котором присутствуют петли, перемычки и витки. Приборы с более высокой сложностью изготавливаются с применением фольгированных комбинированных схем. Это позволяет получать точные сведения при однокомпонентных, двух- и трехмерных и кольцевых деформациях.
Фиксация изменений сопротивления во время расширения или сжатия полупроводниковых и проводниковых пластин получила название тензорезистивного эффекта. В этом случае деформации подвергается сама атомарная структура какого-либо материала. Благодаря этим свойствам было создано много тензорезистивных приборов, нашедших широкое применение в различных областях.
В первую очередь эти физические свойства используются в тензодатчиках веса, устанавливаемых в бытовых напольных весах, в электронных весах магазинов, а также во многих промышленных установках, предназначенных для взвешивания крупногабаритных грузов. Тензодатчики веса выпускаются в широком ассортименте, что позволяет легко подобрать требующуюся комплектацию для конкретного случая. Кроме различных типов весов, эти приборы используются в балочных весовых регистраторах, измеряющих весовые нагрузки в мостовых и платформенных конструкциях. С их помощью регистрируется величина деформационного сдвига или изгиба.
Схемы подключения тензодатчиков
Тензодатчики веса подключаются к индикатору или весовому терминалу двумя основными способами. Как правило, используется четырехпроводной или шестипроводной вариант. В основном, когда применяются тензодатчики веса, схема подключения бывает с помощью четырех проводов.
На различные типы весов грузоприемных устройств устанавливаются тензодатчики разных типов. Например, в автомобильных весах грузоприемные устройства выполняются в виде сборной конструкции. В этом случае применяются две полуплатформы, размещаемые на восьми тензодатчиках – по четыре на каждую из них. Обе группы приборов подключаются с помощью специальных суммирующих плат, объединяющих сигналы, поступающие с тензодатчиков. Они же выравнивают и угловые нагрузки за счет подключения в цепь дополнительных резисторов.
Четырехпроводная схема очень удобна, когда длина кабелей остается неизменной, а также отсутствует необходимость в компенсации температуры, влияющей на сопротивление кабелей. Данная схема очень простая для монтажа и подключения. В случае необходимости улучшить метрологические характеристики весов, применяется схема с шестью проводами, полностью компенсирующая внешние воздействия, в результате которых происходит изменение сопротивления в питающих кабелях.
Тензодатчики – устройство, классические схемы подключения, маркировка, полезная информация для ремонта
Весовой измерительный датчик для весов
Занимаясь ремонтом весоизмерительной техники приходится сталкиваться с некоторым непониманием со стороны механиков такого важного понятия, как принцип работы весового измерительного датчика. Постепенно собралась небольшая коллекция частозадавемых вопросов и ответов на них. В принципе в интернете и на книжной полке есть достаточно материалов, но, как правило, это в основном информация для инженеров проектировщиков, вызывающая зевоту у инженеров ремонтников. Ответы на вопросы делались на основе практических умозаключений и на основании полученных знаний на лекциях по метрологии, но вполне допускаются ошибки в оконечных выводах, фактически все ответы подкреплены практическими данными. Вопросы будем рассматривать от простого к сложному.
- Как правильно называть весовой измерительный датчик для весов.
- Устройство весового измерительного датчика для весов.
- Основное отличие 6-проводного весового измерительного датчика от 4-проводного.
- Зачем в балке весового измерительного датчика для весов сделаны отверстия?
- Устройство тензорезистора
- Определяем маркировку проводов для измерительного датчика весов.
- Определение полярности контактов для измерительного датчика весов (в разработке).
Как правильно называть весовой измерительный датчик для весов.
Работая с весами уже более 20 лет, ответ на этот вопрос так и не был найден, поэтому просто перечислим встречавшиеся термины.
Датчик ХХХХ (где ХХХХ маркировка датчика), чувствительный элемент — Масса-К
Тензометрический датчик (тензодатчик) – CAS
Мы же будем дипломатично называть — весовой измерительный датчик для весов.
Устройство весового измерительного датчика для весов.
Вопрос довольно глобальный, постараемся упростить материал как можно больше, и не вдаться в теоретические выкладки. В самом конце подборки мы все-таки рассмотрим весовой измерительный датчик для весов в более расширенном варианте. А пока, максимально упрощенный вариант.
Классический весовой измерительный датчик для весов на выходе имеет четыре разноцветных провода два — питание (+Ex, -Ex), два — измерительные концы (+Sig, -Sig).
Для справки. Встречаются несколько вариантов обозначения выводов весового измерительного датчика для весов
+Ex, Ex+, Exc+, Excitation+, +Питания, +Питания датчика
-Ex, Ex-, Exc-, Excitation-, — Питания, -Питания датчика
Sig+, LC-Sig+, +Signal, +Сигнал, +Сигнал датчика
Sig-, LC-Sig-, -Signal, -Сигнал, -Сигнал датчика
Цепи компенсации (только для 6-проводного варианта)
+Sense, +Sen, Sen+, Обратная связь+
-Sense, -Sen, Sen-, Обратная связь-
Иногда встречается вариант с пятью проводами, где пятый провод служит экраном для остальных четырех. Суть работы весовой измерительный датчик для весов проста, на вход подается питание, с выхода снимается напряжение. Выходное напряжение меняется в зависимости от приложенной нагрузки на весовой измерительный датчик для весов (балку).
Упрощенная электрическая схема весового измерительного датчика для весов
Основное отличие 6-проводного весового измерительного датчика от 4-проводного.
При большой длине проводов от весового измерительного датчика до блока АЦП, сопротивление самих проводов начинает влиять на показания весов.
Существует два решения этой проблемы:
1. Делать длину проводов одной и той же длины, тогда погрешность от сопротивления проводов вносимая в цепь измерения будет заранее известна, и будет скомпенсирована на уровне АЦП.
Для справки. На весах Масса-К серии ВТ было использовано оригинальное решение, АЦП был установлен прямо на весовом измерительном датчике, что позволяло решить проблему сопротивления проводов. Но был допущен серьезный инженерный просчет – переключатель калибровки не был вынесен за переделы весового измерительного датчика, и как результат усложненная процедура калибровки. |
2. Добавить измерительную цепь, с помощью которой можно измерить сопротивление провода (а точнее падение напряжения) и в динамике подкорректировать погрешность от сопротивления проводов вносимую в цепь измерения.
Измерительная цепь +Sen, -Sen позволяет измерить падение напряжения на соединительных проводах
Для этих целей добавляют два провода +Sen, -Sen которые и позволяют измерить падение напряжения на проводах, теперь достаточно вычесть это значение из общих измерений и мы получим показания только с тензорезисторов.
Упрощенный алгоритм работы обратной связи для компенсации падения напряжения на проводах
Вывод: Из вышесказанного следует, для 4-проводной схемы подключения весового измерительного датчика категорически не рекомендуется изменять (удлинять или укорачивать) длину кабеля от датчика до АЦП. В принципе при изменении длины соединительного кабеля можно сделать повторную калибровку, но вот калибровку термокомпенсации, вряд ли удастся, если это не предусмотрено конструкцией весов |
Зачем в балке весового измерительного датчика для весов сделаны отверстия?
Если бы в балке не было отверстий, то вся нагрузка была бы распределена по всей поверхности в равной степени, и выявить деформацию было бы очень трудно. Так как тензорезисторы должны размещаться в местах наибольшего напряжения, то место установки последних делают специально тонким, нагрузка приложенная на конец балки, была максимально выражена в этих самых местах. Для максимального эффекта тензорезисторы строго ориентируют на поверхности балки, строго под самым тонким местом.
Тензорезистор установлен строго по меткам на поверхности балки и в соответствии с метками на подложке.
Двумя отверстиями расположенными рядом достигается эффект – на одной плоскости один датчик работает на сжатие другой на растяжение.
Работа тензорезисторов под нагрузкой
Как правило, тензорезистор весового измерительного датчика для весов представляет собой длинный проводник выполненный в виде змейки. При сжатии длина проводника уменьшается и сопротивление уменьшается, при растяжении длина увеличивается и сопротивление увеличивается.
Основной тензорезистор, его положение строго позиционировано, в примере 265 Ом
Измерительный тензорезистор устанавливается строго по меткам, позиционные метки расположены по трем сторонам.
Компенсационный тензорезистор, требования к позиционированию менее жесткие, в примере 20 Ом
Несмотря на привычный образ для китайской продукции – товар плохого качества. Китайские тензодатчики обладают довольно хорошими измерительными параметрами, и это не просто цифра на бумажке, а реальная цифра снимаемая с тензодатчика при измерениях. Но без ложки дегтя не обойтись, именно на китайских датчиках первый раз довелось увидеть деформацию балки, видимую даже невооруженным взглядом.
Тензодатчик 6кг (Китай) деформация видна без линейки
Тензодатчик 150кг (Китай) и снова деформация видна без измерительных приспособлений
Не то что бы тензодатчики других производителей (не Китай) работают безотказно, например при наезде на тензодатчик машиной, тензодатчик конечно выходит из строя, но на нем просто срезает резьбу, нарезаем новую резьбу и датчик снова исправен.
Определяем маркировку проводов для измерительного датчика весов.
Применяем теорию на практике. В качестве образца рассмотрим датчик с весов CAS DB H, у которого нам надо определить назначения контактов с датчика, а именно входные/выходные цепи.
Для справки. Весы CAS DB H со старым АЦП, дисплей люминесцентный с накалом. Напряжение питания может отличаться от весов с черным АЦП.
Провода имеют цветовую маркировку и их 5 – черный, синий, зеленый, красный, белый. Черный откидываем сразу, он ни с чем не звонится – это экран. Будем отталкиваться от того факта, что большинство датчиков имеют выходное сопротивление измерительного моста кратным 350 Ом, а сами датчики подключены по мостовой схеме. Измеряем сопротивления между всеми выводами, получаем 6 значений:
- красный-белый 422 Ом
- синий-зеленый 350 Ом
- синий-красный 335 Ом
- зеленый-красный 335 Ом
- синий-белый 261 Ом
- зеленый-белый 261 Ом
Способ №1 классический.
Более быстрый, но дающий результат, в случае если датчик имеет выходное сопротивление измерительного моста кратное 350 Ом.
Как можно увидеть синий и зеленый провод являются контактами выходного сопротивления измерительного моста, так как сопротивление между ними кратно 350 Ом. Соответственно оставшиеся два контакта красный и белый — это контакты питания датчика.
Рис. Определяем входные и выходные цепи датчика с весов CAS DB H.
Для справки. Остальные данные по сопротивлению проводов весового датчика весов CAS DB H можно посмотреть здесь. Допускается отклонение сопротивления от указанных +-1 Ом. Стандартное напряжение питания датчика – это +5В, но датчики обычно рассчитываются на 12В.
Способ №2 альтернативный.
Проверялся только на мостовой схеме, для других схем подключения может не подойти.
Находим контакты с максимальным сопротивлением, красный и белый провод имеют сопротивление больше всех , 422 Ом – это контакты для входного напряжения. Соответственно оставшиеся два синий и зеленый, есть контакты выходного сопротивления измерительного моста.
Мы намеренно опустили определение полярности входных и выходных групп контактов, что бы не перегружать материал информацией.
Определение полярности контактов для измерительного датчика весов (в разработке).
Тут все несколько неоднозначно, по крайней мере, для нас. Поэтому выкладываем только данные практических экспериментов. В качестве объекта измерения выбраны весы CAS DB 1H с тензодатчиком BC-150DB. Зная паспортные данные тензодатчика, имея 4 варианта подключения и зная правильную ориентацию на станине – снимем показания с выходного датчика. Правильное подключение по паспорту.
Вариант 1. (паспортное подключение)
Рис. Подключение тензодатчика по заводским параметрам.
- 0кг, на выходе 0мВ
- 20кг, на выходе 1мВ
- 40кг, на выходе 1,9мВ
Показания родного АЦП с весов
- 0 кг, показания АЦП, канал неизвестен 1,160
- 20 кг, показания АЦП, канал неизвестен 5,956
- 40 кг, показания АЦП, канал неизвестен 10,751
Давление на датчик снизу вверх — дает на выходе отрицательное напряжение.
Вариант 2. (перевернутое подключение)
Рис. Подключение тензодатчика наоборот, на входе плюс подключаем к минусу, на выходе плюс соединяем к минусу.
- 0кг, на выходе 0мВ
- 20кг, на выходе 1мВ
- 40кг, на выходе 1,9мВ
Показания родного АЦП с весов
- 0 кг, показания АЦП, канал неизвестен 1,150
- 20 кг, показания АЦП, канал неизвестен 5,916
- 40 кг, показания АЦП, канал неизвестен 10,679
Давление на датчик снизу вверх — дает на выходе отрицательное напряжение.
Как видно из показаний, данные АЦП несколько отличаются. В рабочем режиме весы начинают «врать», то есть показывать меньший вес, но если весы откалибровать — показания становятся правильными и весы становятся полностью работоспособными.
Фактически подключение не влияет на работоспособность весов в целом, но показания при разных подключениях имеют небольшое отличие. Тензодатчик можно заставить работать в обоих подключениях. Два других варианта подключения рассматривать не будем, так как показания вольтметра на выходе получаются отрицательными, а соответственно нас не интересуют.
DIY набор — сделай сам электронные весы на 3 кг.
Как обычно набор приехал в простых пакетах, к сожалению, авторы набора вообще не озаботились выпуском хоть какой-то инструкции, так что придется собирать, основываясь на подписях на плате и мануалах на модули из сети. Правда стоит отметить, что отсутствие инструкции частично компенсируется пакетом файлов который можно скачать со страницы заказ, тут есть и принципиальная схема, и печатная плата и даже полный исходный код прошивки. В роли основного датчика выступает тензометрический датчик веса.
- датчики силы (измеряет усилия и нагрузки)
- датчики давления (измерение давления в различных средах)
- акселерометры (датчик ускорения)
- датчики перемещения
- датчики крутящего момента
- консольные
- s-образные
- «шайба»
- «бочка»
- Дифференциальный вход с напряжением: ± 40 мВ
- Точность преобразования: 24 бит
- Частота обновления: 80 Гц
- Рабочее напряжение: 5 В постоянного тока
- Рабочий ток: <10 мА</li>
- Размер: 38 x 21 x 10 мм
Набор из разъемов с их помощью предлагается собрать вмести три платы весов. Ну и дисплей для отображения информации, это давно всем известный 1602А, две строки по 16 символов. Ну и акриловый корпус, куда же без него. Начнем сборку. Вначале, как всегда, самые мелкие элементы. Теперь панели для микросхем, и резисторную сборку, последнюю пришлось немного пригнуть иначе потом было бы невозможно установить контроллер. Теперь кнопки и оставшиеся детали. А теперь я делаю первую большую ошибку, гнездо для подключения контроллера припаиваю и отгибаю параллельно плате. Почему именно так? Посмотрев картинки на сайте, мне показалось, что именно так должно все собираться. А на плату HX711 припаиваю изогнутые контакты. Потом все это придется переделывать, но об этом я еще не знаю 🙂 Освободил корпус от защиты, при резке одну панель немного прожарили, бумага в этом месте сгорела, а панель пожелтела немного. В процессе сборки выяснилось, что мой первоначальный вариант с креплением платы HX711 просто физически не влезает в корпус, пришлось выпаивать разъемы и переделывать все по-другому. Собственно как нужно было правильно припаивать ножки к плате HX711. Разъем на основной плате тоже пришлось переделать, он ставится просто вертикально. Пока выпаивал разъем с АЦП и запаивал новый, умудрился вырвать провода с тензодатчика. Думал на это обзор и закончится, но зачистив защитный резиновый компаунд, удалось подпаять провода назад и на удивление все заработало 🙂 После восстановления датчика от греха подальше приклеил провода к бруску суперклеем. Думаю примерно так, стоило поступить сразу, потому как провода тонкие и хлипкие. Ну и наконец, весы в сборе. Вид снизу. Первое включение, экран на весах инверсионный, он плохо дружит с внешней подсветкой, так что за качество фото прошу прощения. После включения на экране в первой строке всегда отображается надпись Welcome to use! Во второй строке, слева отображается вес, справа коэффициент калибровки датчика. Для начала код из прошивки: :
GapValue — это и есть тот самый коэффициент, который нужно подобрать. Механизм взвешивания следующий. На вход АЦП поступает некое напряжение, которое меняется в зависимости от силы, приложенной к датчику. АЦП преобразует напряжение в число и передает его контроллеру. Так как датчик линейный то изменение напряжения на выходе с датчика пропорционально изменению веса, значит единственное что остается, подобрать такой коэффициент при делении на который получался бы значение веса. Для подбора коэффициента используются две средние кнопки весов, в моем случае коэффициент получился равный 585. С таким коэффициентом удалось добиться точности ± 1 грамм и стабильных результатов. Помимо кнопок для калибровки у весов есть еще две кнопки, крайняя левая отвечает за обнуление данных, такую операцию нужно проводить каждый раз после включения весов. Крайняя правая кнопка, судя по подписи, отвечает за перезагрузку, не совсем понял, что значит перезагрузка в понимании разработчика, при нажатии с экрана на некоторое время исчезают значения веса и коэффициента, потом все восстанавливается.
Видео сборки и настройки:
Небольшой вывод: если кратко, то неплохо, вполне себе интересный набор который можно собрать за вечер и получить рабочую вещь. И да я понимаю, что за эти деньги можно купить гораздо лучшие весы и не одни, но как писали в комментариях к таким обзорам основное его назначение это обучение и развлечение, а не получение конечного изделия как можно дешевле. В конце концов, тут как не крути ручная работа, а это всегда стоит дорого даже если и приходиться прилагать свои собственные руки.
Заранее приношу свои извинения за орфографию и грамматику текста, все допущенные ошибки сделаны не специально, а только по незнанию и в связи с несовершенством программ автоматической проверки текстов.
Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.