Что называется степенью сжатия двигателя

Степень сжатия и компрессия.

image

Степень сжатия — расчетная величина, показывает соотношение объемов до сжатия и после.

Компрессия — реально измеряемая величина, в процессе сжатия меняется не только объем и давление, но и температура, поэтому компрессия (в исправном двигателе) обычно на несколько единиц больше степени сжатия. Hа компрессию влияют также негерметичность клапанов, колец, прокладки и т.п. В руководстве по ремонту обычно указано минимальное значение компрессии, при котором еще можно ездить.

Одно из наиболее распространенных заблуждений — от степени сжатия зависит многое. На самом деле все очень просто: этот показатель отражает отношение полного объема цилиндра к объему камеры сгорания, или, другими словами, равен частному от деления объема надпоршневого пространства в нижней мертвой точке (н. м. т) на его объем в верхней мертвой точке (в. м. т). То есть геометрическая степень сжатия показывает, во сколько раз сжимается топливовоздушная смесь в цилиндрах двигателя при движении поршня от нижней мертвой точки к верхней мертвой точке. Но в жизни, естественно, получается не всегда так, как в теории…

На заре автомобилизма степень сжатия двигателей Отто (а других 100 лет назад и не существовало) делали невысокой — 4 5, чтобы при работе на низкооктановом бензине (гнали, как умели) не возникала детонация2.

Допустим, при рабочем объеме цилиндра 400 «кубиков» объем камеры сгорания равен 100 мл. То есть геометрическая степень сжатия у такого двигателя составляет:

е = (400 + 100) : 100 = 5.

Если же объем камеры сгорания уменьшить до 40 см3 (технически несложно), то степень сжатия повысится:

е = (400 + 40) : 40 = 11.

И что же это дает? А то, что термический КПД двигателя увеличится почти в 1,3 раза. И если 6 цилиндровый 2,4 литровый мотор со степенью сжатия 5 развивает мощность в 100 л.с., то при степени сжатия 11 она повысится почти до 130. Причем при неизменном расходе горючего! Иными словами, расход топлива в расчете на 1 л.с. в час сократится на 22,7 %.

Поразительный результат, достигнутый самыми простыми средствами. Не слишком ли хорошо, чтобы быть правдой? Никакой мистики: чем выше степень сжатия, тем ниже температура отработанных газов, идущих на выхлоп. При е = 11 мы попросту заметно меньше обогреваем атмосферу, чем при е = 5, вот и все.

Автомобильные двигатели — разновидность тепловых машин, которые подчиняются законам термодинамики. Еще в первой половине XIX века замечательный французский физик Сади Карно заложил основы теории тепловых машин, в том числе и двигателей внутреннего сгорания.

По Карно, КПД двигателя внутреннего сгорания тем выше, чем больше разница между температурой газов (рабочего тела) к концу горения топливовоздушной смеси и их температурой на выпуске. Эта разница зависит от е, а вернее, от степени расширения рабочих газов в цилиндрах. Да, тут есть нюанс: по Карно, для термического КПД важна не степень сжатия, а именно степень расширения. Чем сильнее расширяются горячие газы на рабочем ходу, тем ниже падает их температура, что естественно. Просто в двигателях обычных конструкций степень расширения геометрически совпадает со степенью сжатия. Вот мы и привыкли не разделять эти понятия. К тому же детонация зависит как раз от е, то есть от компрессии. Чем сильнее сжимается топливовоздушная смесь в цилиндрах двигателя Отто3, чем выше давление и температура к моменту искрообразования, тем вероятнее возникновение ударных волн в камере сгорания и детонации. Она-то и ограничивает степень сжатия, но степень расширения рабочих газов здесь ни при чем. Вот если бы каким-то образом отделить одну степень от другой — чтобы при умеренной компрессии добиться сильного расширения рабочих газов…

Уже полвека с лишним известен так называемый 5 тактный цикл Atkinson’а/Miller’а. Он как раз и разводит степень сжатия и степень расширения по разные стороны.

Представьте, что у вашего 1,5 литрового 16 клапанника ВАЗ-2112 впуск заканчивается не на 36 градусах после нижней мертвой точки (по углу поворота коленчатого вала), а очень поздно — на 81 градусе. То есть при 3 тыс. оборотов поршень на своем ходу к верхней мертвой точке вытесняет часть топливовоздушной смеси через открытые клапаны обратно во впускной коллектор (не беспокойтесь, она там не пропадет). Иными словами, такт сжатия начинается только где-то на 75 градусах после нижней мертвой точки, а до того имеет место своеобразный такт вытеснения смеси. Тактов теперь не 4, а 5: впуск, обратное вытеснение, сжатие, рабочий ход, выпуск. На первый взгляд, идиотская схема: зачем гонять смесь туда-сюда? Допустим, обратно вытесняется 20 % топливовоздушной смеси, уже попавшей в цилиндр, и сжимается только 80 %. И пусть геометрическая е равна 13 — исключительно высокая для Отто. Однако реальная степень сжатия гораздо ниже — всего 10,6. Что и требовалось доказать.

У конструкции с реальной степенью сжатия 10,6 (вполне допустимо для товарного бензина) степень расширения рабочих газов — 13. Термический КПД двигателя по факту в 1,0518 раза выше, чем по его степени сжатия. Не так много, но моторостроители годами бьются ради 5 процентной экономии горючего. Двигатели пассажирских автомобилей уже вовсю работают по 5 тактному циклу. В качестве примера можно привести 1,5 литровую тойотовскую «четверку» 1NZ-FXE (для Prius) или фордовскую 2,26 литровую (для Escape Hybrid).

Вроде бы блестящее решение, однако у медали есть и обратная сторона. Геометрическая е (степень расширения рабочих газов) у 1NZ-FXE — 13, реальная степень сжатия — около 10,5. В результате из-за обратного вытеснения смеси 1,5 литровый мотор по крутящему моменту и мощности, к сожалению, опускается примерно до 1,2 литрового. Итог — выигрываем в термическом КПД ценой потери реального литража. Мало того, двигатель с поздним закрытием впускных клапанов совсем не тянет «на низах». Поэтому 5 тактный цикл годится в «гибридных» силовых агрегатах, где тяговый электромотор принимает на себя нагрузку при самых низких оборотах. Потом в работу вступает двигатель внутреннего сгорания. Так или иначе 5 тактный цикл позволяет повысить степень расширения рабочих газов и термический КПД двигателя.

А вот наддув, наоборот, вынуждает понижать степень сжатия. При подаче топливовоздушной смеси под избыточным давлением реальная компрессия в цилиндрах оказывается слишком высокой — даже при умеренной геометрической е. Приходится отступать. Отсюда снижение термического КПД и повышенный расход бензина у двигателей с наддувом, если не применять спецгорючее.

Чем больше октановое число бензина, тем выше возможная (по условиям детонации) степень сжатия, тем эффективнее работает мотор. Исключительно высокую е допускает используемый в качестве горючего газ (нефтяной или природный): без наддува — 13 14, с компрессором — 10 11. Водород тоже отличается стойкостью против детонации. Потрясающие антидетонационные качества у спирта — метилового или этилового. Вдобавок у него высокая теплота испарения. Испаряясь, он сильно охлаждает топливовоздушную смесь (а заодно и поверхность камеры сгорания). Холодная смесь плотнее и в цилиндр ее по весу входит существенно больше — реальный коэффициент наполнения оказывается выше и, как следствие, возрастают крутящий момент и мощность. Кроме того, этиловый (питьевой!) спирт экологичен. Правда, расход спиртового топлива в литрах гораздо больше, чем бензина, поскольку теплотворная способность метанола и этанола незначительная. А вот в энергетическом эквиваленте спирт заметно эффективнее бензина — благодаря высокой степени сжатия (расширения). У такого топлива есть перспектива. На сегодняшний день в некоторых странах широкое распространение получила смесь E85: 85 % этанола и 15 % бензина.

Пока что повысить степень сжатия вазовского 16 клапанника с 10,5 до 11,5 на 92 м бензине от местной АЗС — ой как непросто. Можно применить впрыск бензина непосредственно в камеры сгорания — вместо впускных каналов. Испарение бензина не на впуске, а в цилиндрах — тот же самый «компрессорный» эффект. Или организовать двухискровое зажигание — с двумя свечами на цилиндр. А также поставить выпускные клапаны с внутренним (натриевым) охлаждением — раскаленные тарелки провоцируют детонацию. И еще — очистить поверхность камеры сгорания от нагара и отполировать ее.

Влияют на степень сжатия и конфигурация камеры сгорания и скорость вихревого движения топливовоздушной смеси. Есть много способов борьбы с детонацией, хороших и разных. Так до какого уровня есть смысл поднимать е двигателя Отто? Здесь вот что важно учитывать: термический КПД нарастает с повышением степени сжатия (расширения), но не линейно, а с постепенным замедлением. Если при увеличении степени сжатия от 5 до 10 он повышается в 1,265 раза, то от 10 до 20 — только в 1,157 раза. Зато быстро накапливаются побочные «заморочки», которых лучше избегать. Поэтому степень сжатия 13 14 — разумный компромисс, к которому и следует стремиться. Вперед и с песней!

1 Мы обычно говорим «бензиновый», хотя знаем, что автомобильные двигатели прекрасно работают и на газе. А также на спирте — метиловом или этиловом… Так что лучше называть их двигателями с искровым зажиганием или двигателями Отто (по имени создателя такой конструкции Николауса Отто) — по аналогии с дизелями.

2 Кто не слышал детонационные звуки в цилиндрах? Это когда говорят: «пальцы стучат». При слишком высокой (по качеству горючего) степени сжатия горение топливовоздушной смеси после ее воспламенения от искры нарушается. Оно приобретает взрывной характер, в камере сгорания возникают ударные волны, способные вызвать поломку мотора.

3 Именно двигатели Отто; дизели детонации не знают. Почему — отдельный разговор.

Что такое компрессия и степень сжатия двигателя?

Почти каждый автовладелец знаком с таким понятием, как компрессия двигателя. Но не многие знают, что существует так же определение степени сжатия. Автомобилисты могут впадать в заблуждение, что у этих двух понятий есть общие моменты, но не стоит думать, что это так. Сегодня мы расскажем вам чем же отличаются данные процессы.

image

Компрессия и предпосылки низкого давления

Компрессия

image

Что же такое компрессия применительно к двигателю? Итак, компрессией называется наивысшая степень давления, которое возникает в цилиндре в конце механизма сжатия. В основном данная сила измеряется в количестве атмосфер. Величина необходимого давления внутри цилиндров зависит в первую очередь от объёма двигателя.

image

Предпосылки низкого давления

Давление, как непостоянная величина, очень сильно зависит от того, на какой стадии износа находится двигатель. Чем более изношен мотор, тем более низким будет давление в цилиндрах. Вот три основные причины понижения давления вследствие износа:

  • Поршневая система сильно изношена. Это характеризуется появлением на её элементах микроцарапин и выбоин. Одной из причин является использование горючего ненадлежащего качества, когда частицы осадка, оставшегося от сгорания топлива, вредят стенкам цилиндра и поршню
  • Уплотнительные кольца может заклинить. Происходит это по всё той же причине: плохому качеству топлива. От нагара уплотнительные кольца и пазы поршня склеиваются между собой, что приводит к отсутствию нужной степени разжимания во время нагрева, что в свою очередь ведёт к снижению давления
  • Поршневая система, как и любая другая система автомобиля, с течением времени изнашивается. В процессе износа от конструкции отделяются небольшие металлические частицы. Следствием служит потеря давления, а так же иные проблемы с двигателем

Как увеличить компрессию?

В первую очередь необходимо понять истинную причину уменьшения давления. Итак, если износилась поршневая система автомобиля, что соответственно, характеризуется уменьшением плотности прилегания деталей между собой, то способ решения этой проблемы — покупка нужной присадки для наращивания недостающей толщины металла. Что в свою очередь повысит компрессию. Применяйте этот метод, когда вы абсолютно уверены, что проблема в этом. Вы так же можете узнать точно о должной степени компрессии для вашего двигателя в технических характеристиках автомобиля.

Если же причина в заклинивании поршневых колец, то последовательность ваших действий может быть следующей: выкрутите свечи, залейте в отверстия по сто грамм масла и оставьте машину примерно на час. Масло способно размягчить нагар, который выведется в процессе последующей эксплуатации автомобиля. Если после всех этих действий вы не увидели каких-либо перемен к лучшему, то отправляйтесь в ближайший СТО для профессиональной диагностики.

Степень сжатия

Мы выяснили, что компрессией называется максима давления внутри цилиндров, и остаётся только дать определение сжатию. Так вот, степень сжатия — это соотношение между объёмом всего цилиндра и объёмом камеры сгорания. Степень сжатия является постоянной величиной, которая является уникальной для каждой марки автомобиля. Нет резона брать в сравнение компрессию и степень сжатия, поскольку у последней нет даже единиц измерения.

Если вы знаете, какую степень сжатия имеет двигатель, то можете без труда вычислить компрессию. Просто умножьте цифру степени сжатия на 1,4 атмосферы. Для определения степени сжатия проделайте следующее:

  • Проведите измерение рабочего объёма цилиндра. Это можно сделать разделив его общий литраж на количество цилиндров
  • Измерьте размеры камеры сгорания. При этом поршню необходимо быть в верхнем положении. Далее вы можете применить шприц с машинным маслом. Зафиксируйте, сколько масла было вылито, и получите нужные данные
  • Поделите два полученных выше результата между собой, чтобы вычислить степень сжатия

Вывод из всего вышеизложенного будет однозначным: компрессия не равнозначна степени сжатия и сравнивать эти параметры не имеет смысла.

Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

Почему для двигателей так важна степень сжатия, и на что она влияет.

image

Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок.

Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители.

Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран.

В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей.

Как определяется степень сжатия, и что это такое?

Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение.

Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).

image

Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах).

Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия.

А теперь математический пример соотношения степени сжатия в ДВС.

Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1.

Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений.

Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

Почему производители стараются увеличить степень сжатия?

Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень.

Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.

image

Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

Более высокое сжатие в двигателе означает больше мощности, но больше давления

На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород).

На приведенном выше графике кривая 1-2 показывает ход сжатия.

Линия 2-3 показывает сгорание топлива.

Верхняя кривая 3-4 показывает ход расширения.

И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя.

Если описать все более техническим языком, то эту диаграмму следует понимать так:

На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке.

Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива.

Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения).

Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан.

Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла.

Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия.

И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла.

Более высокое сжатие в двигателе также означает более высокую тепловую эффективность

image

Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):

image

Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql).

Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше.

Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы.

image

Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1.

Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности.

Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине.

Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля.

Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине.

Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя.

image

Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

Существуют ли ограничения по увеличению степени сжатия в двигателях

Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире.

Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур).

Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия.

Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях.

Что такое компрессия и степень сжатия и чем они отличаются

image

При диагностике автомобиля перед покупкой опытные автовладельцы практически всегда советуют новичкам проверить компрессию. А еще существует степень сжатия – казалось бы, схожий термин, ведь компрессия – это и есть сжатие. На самом деле это совершенно разные вещи. Давайте разберемся, что есть что, а заодно поймем, что и как нужно проверять при покупке машины.

Начнем со степени сжатия. Как мы помним, поршень в цилиндре при работе двигателя движется вверх-вниз, имея две так называемых мертвых точки, верхнюю и нижнюю. Так вот, степень сжатия – это отношение между двумя объемами: полным объемом цилиндра, когда поршень находится в нижней мертвой точке, и объемом камеры сжатия, когда поршень находится в верхней мертвой точке. То есть степень сжатия – это математическое отношение, которое показывает, во сколько раз топливовоздушная смесь (или воздух, если речь о дизеле) сжимается в цилиндре при работе мотора.

Степень сжатия – одна из базовых характеристик любого двигателя, и закладывается она на стадии проектирования. У бензиновых моторов она ниже, чем у дизельных: в среднем от 8:1 до 12:1 у первых и от 14:1 до 23:1 у вторых. Дело в том, что работа дизельного мотора предполагает самостоятельное воспламенение топливовоздушной смеси от сжатия, а в бензиновом моторе смесь в каждом такте поджигается свечой зажигания. Однако в целом по мере развития технологий двигателестроения степень сжатия в моторах росла. Причина проста: повышение степени сжатия позволяет увеличить КПД мотора, получая больше мощности при том же рабочем объеме и расходе топлива. Собственно, с ростом степени сжатия связано и применение более высокооктановых бензинов.

Таким образом, степень сжатия – это конструктивная характеристика двигателя, и она не меняется по мере его износа и старения. Степень сжатия не нужно «проверять» при покупке, а знать ее нужно в основном для того, чтобы знать, какой бензин лучше заливать в бак купленной машины.

Если степень сжатия – параметр математический и неизменный, то компрессия – характеристика изменяемая. Компрессия – это давление, создаваемое в цилиндре в конце такта сжатия, когда поршень идет от нижней мертвой точки к верхней, сжимая воздух или топливовоздушную смесь. Давление в цилиндре в момент, когда поршень достиг верхней мертвой точки – это и есть компрессия. Можно подумать, что компрессия фактически должна быть равна степени сжатия – ведь она тоже показывает разницу давления в цилиндре при двух положениях поршня – верхнем и нижнем. Однако на самом деле компрессия оказывается значительно выше. Ведь воздух при резком сжатии нагревается, что означает увеличение давления. А еще он нагревается от горячих стенок цилиндра, ведь рабочая температура двигателя гораздо выше температуры окружающей среды. Таким образом, компрессия, конечно, зависит от степени сжатия, но не равна ей. И именно компрессию замеряют при диагностике двигателя, чтобы оценить его техническое состояние.

Замер компрессии проводится с учетом перечисленных выше условий: на полностью прогретом двигателе и при полностью открытой дроссельной заслонке, отвечающей за подачу воздуха в цилиндр. Разумеется, горение топлива для замера компрессии не нужно, в цилиндре сжимается только воздух. Так что подачу топлива отключают, а свечу зажигания (или накаливания, если речь идет о дизеле) выкручивают, а на ее место вкручивают шлаг компрессометра. Компрессометр – это прибор для измерения компрессии. Он фактически представляет собой манометр, подключаемый трубкой к цилиндру и оснащенный обратным клапаном, чтобы не сбрасывать измеренное давление.

Замер компрессии позволяет оценить исправность и техническое состояние двигателя. Во-первых, после замера можно сравнить соответствие полученного результата заводским параметрам – то есть оценить компрессию в имеющемся двигателе по сравнению с новым. Во-вторых, низкий показатель компрессии означает наличие проблем с мотором, ведь он сигнализирует о том, что воздух «утекает» из камеры сгорания, а при работе мотора из нее будут прорываться раскаленные газы. Причин может быть довольно много: поршневые кольца, повреждения седел клапанов и самих клапанов, негерметичность прокладки ГБЦ и даже трещина в самом поршне. Ну а в-третьих, важна не только сама величина компрессии, но и ее равномерность во всех цилиндрах двигателя. Если компрессия в одном или нескольких цилиндрах ниже, чем в других, это говорит о неравномерном износе и наличии проблем.

Таким образом, замер компрессии – одна из простых, но эффективных методик оценки исправности и общего технического состояния двигателя. Он позволяет быстро отсеять заведомо «мертвые» моторы, имеющие проблемы с цилиндропоршевой группой, клапанами и так далее. Поэтому замер компрессии можно и нужно проводить при диагностике практически любого автомобиля перед покупкой.

Ссылка на основную публикацию
Похожее
Наш адрес
г. Петрозаводск,
ул. Новосулажгорская
Схема проезда
Часы работы
Ежедневно С 8:00 до 22:00:
https://vk.com/
Если у вас есть какие-либо вопросы, не стесняйтесь обращаться к нам на прямую!